Équations différentielles
2e édition revue et augmentée
Table des matières :
Équations différentielles ordinaires d’ordre un
Équations différentielles ordinaires d’ordre deux
Systèmes d’équations différentielles
Transformées de Laplace
Séries de Fourier
Équations aux dérivées partielles
Présentation du livre :
Ce livre vise à faire comprendre le rôle et la pertinence des équations différentielles en génie, maîtriser les méthodes de base permettant de résoudre les équations différentielles, et connaître quelques équations aux dérivées partielles parmi les plus importantes en génie. Dans le cas des équations aux dérivées partielles, on insiste surtout sur la méthode de séparation des variables, de concert avec les séries de Fourier, pour les résoudre. Dans cette deuxième édition, plusieurs sections ont été ajoutées afin de compléter la théorie présentée dans la première édition.
Puisque ce livre s’adresse avant tout aux étudiants en sciences appliquées, même si nous donnons la preuve de la plupart des résultats mathématiques présentés, les exercices sont presque tous des applications de la théorie. Les étudiants doivent généralement trouver la solution explicite d’une équation différentielle donnée, sous certaines conditions.
Nous illustrons le plus souvent les concepts théoriques à l’aide d’exemples typiques. De plus, le manuel contient plus de 460 exercices, dont plusieurs sont des problèmes déjà proposés en examen. Les réponses à tous les numéros pairs sont données en appendice.
Équations Différentielles