MATHS EN PRATIQUE À l’usage des étudiants
Cours et exercices
Table des matières :
Chapitre 1. Ensembles, nombres et fonctions
Chapitre 2. Nombres complexes et polynômes
Chapitre 3. Dénombrement, permutations, graphes
Chapitre 4. Équations linéaires et vecteurs
Chapitre 5. Matrices et déterminants
Chapitre 6. Espaces vectoriels et applications linéaires
Chapitre 7. Espace hermitien, espace euclidien
Chapitre 8. Des méthodes numériques
Chapitre 9. Limites, dérivées, intégrales
Chapitre 10. Utilisation de la dérivée et de l'intégrale
Chapitre 11. Interpolation, calcul numérique d'intégrales
Chapitre 12. Fonctions de plusieurs variables
Chapitre 13. Intégrales multiples
Chapitre 14. Champ de vecteurs, formes différentielles
Chapitre 15. Équations différentielles
Chapitre 16. Systèmes différentiels
Chapitre 17. Séries, séries entières, séries de Fourier
Présentation du livre :
L'ouvrage présente les méthodes de raisonnement et d'analyse mathématiques, les outils de calcul ainsi que de nombreux exemples de modélisation dans différents domaines (physique, biologie et économie). Les thèmes traités (algèbre et analyse) sont communément abordés en L1, L2 et L3 et IUT. Le cours donne la priorité à l'efficacité opératoire et les applications, sous la forme d'exercices résolus intégrés dans le cours, abordent des problèmes concrets. Des exercices d'entraînement sont par ailleurs proposés en fin de chapitre.
Sommaire de l'ouvrage :
Algèbre : Ensemble de nombres et fonctions. Nombres complexes. Matrices et vecteurs. Déterminants. Espaces vectoriels et applications linéaires. Géométrie. Analyse : Nombres réels et fonctions. Fonctions continues. Fonctions dérivables. Dérivées partielles. Intégrales et primitives. Intégrale double ou triple. Développement limité. Equations différentielles. Courbe. Champs de vecteurs.
MATHS EN PRATIQUE À l’usage des étudiants